Deformations of 4d SCFTs and Supersymmetry Enhancing RG Flows

Kazunobu Maruyoshi 丸吉一暢 (Seikei University 成蹊大学)

w/ Jaewon Song, 1606.05632, 1607.04281 w/ Prarit Agarwal and Jaewon Song, 1610.05311 w/ Emily Nardoni and Jaewon Song, 1806.08353, 19XX,XXXX

@Yau Mathematical Sciences Center September 5, 2019

Introduction

Symmetry is one of the most important quantities which partly characterizes QFT.

We usually define a theory in UV and analyze the RG flow and its IR theory.

(Suppose we have a nontrivial fixed point in IR, then) **Does the symmetry in UV still characterize the IR theory? Or is the IR symmetry same as the UV symmetry?**

The IR symmetry could be different from the UV symmetry.

Susy enhancement

We consider enhancement of supersymmetry in 4d supersymmetric QFTs along a renormalization group flow.

Few example is known for supersymmetry in 4d:

- N=2 conformal SU(n) SQCD (with gauge coupling g), then change the superpotential coupling to generic value W = h q Φ q' \rightarrow N=2
- N=1 Lagrangian theories where a coupling constant is set to infinity → N=2 E₆, E₇ and R_{0,N} theories **[Gadde-Razamat-Willet, Agarwal-KM-Song]**

N=| SU(2) gauge theory with [KM-Song]

- two fundamental chirals q, q'
- adjoint chiral ϕ
- two singlet chirals X, M

	q	q'	ϕ	\mathcal{M}	X
$U(I)_{R0}$	1/2	-5/2		6	0
$\cup ()_{\mathcal{F}}$	1/2	7/2	-	-6	2
U(I) _R	14/15	8/15	2/15	4/5	26/15

with superpotential

$$W = X \mathrm{tr} \phi^2 + \mathrm{tr} \phi q^2 + M \mathrm{tr} \phi q'^2$$

By a-maximization, we get the central charges

$$a = \frac{43}{120}, \ c = \frac{11}{30}, \ \Delta(M) = \frac{6}{5}$$

which are the same as those of **Argyres-Douglas theory H** $_0$ (an N=2 superconformal field theory (SCFT)).

- By checking the superconformal index, one can show that there is indeed an N=2 supersymmetry.
- Thus, it's likely that the Argyres-Douglas theory is realized at this fixed point.

The Argyres-Douglas theory

- was originally found at a special point on the Coulomb branch of N=2 SU(3) pure SYM with mutually non-local massless particles [Argyres-Douglas, Argyres-Plesser-Seiberg-Witten]
- There is no weak-coupling cusp (no exactly marginal coupling) and the Coulomb branch operator has scaling dimension 6/5
- The UV Lagrangian theory can be used to compute partition functions, e.g. superconformal index

Questions:

- Mechanism of the susy enhancement?
- How widely does this enhancement happen?

The coupling with (gauge-)singlet chiral is a key point.

This has not been fully studied so far, and could lead to an IR fixed point with enhanced symmetry **[Seiberg's dual theory, Kim-Razamat-Vafa-Zafrir]**

In this talk, we will see two methods, which accommodate such kind of coupling, and see the enhancement is general phenomenon:

- Nilpotent deformations of N=2 SCFTs with non-Abelian flavor symmetry
- Systematic deformation of N=I SCFTs

N=I deformation

Suppose we have an N=2 SCFT **T** with **non-Abelian flavor symmetry F.**[Gadde-KM-Tachikawa-Yan, Agarwal-Bah-KM-Song]

de-KM-Tachikawa-Yan, Agarwal-Bah-KM-Song] [Agarwal-Intriligator-Song] cf. [Heckman-Tachikawa-Vafa-Wecht]

Then let us

 couple N=I chiral multiplet M in the adjoint rep of F by the superpotential

 $W = \mathrm{tr}\mu M$

• give a nilpotent vev to M (which is specified by the embedding $\rho: SU(2) \rightarrow F$), which breaks F $W = \sum_{j} \mu_{j,j} M_{j,-j}$ (For F=SU(N), this is classified by a partition of N or Young diagram.)

This gives IR theory $T_{IR}[T, \rho]$, which is generically N=1 supersymmetric.

Conditions for "N=2"

For principal embedding: we conjecture that the condition for T to

have enhancement of supersymmetry in the IR is as follows:

- F is of ADE type
- 2d chiral algebra stress-tensor is the Sugawara stress-tensor: [Beem-Lemos-Liendo-Peelaers-Rastelli-van Rees]

$$\frac{\dim F}{c} = \frac{24h^{\vee}}{k_F} - 12$$

- rank-one theories H_1 , H_2 , D_4 , E_6 , E_7 , $E_8 \rightarrow H_0$
- SU(N) SQCD with 2N flavors
- Sp(N) SQCD with 2N+2 flavors
- (A₁, D_k) theory
- some quiver gauge theories → [Agarwal-Sciarappa-Song

- $\rightarrow (A_1, A_{2N})$
- $\rightarrow (A_1, A_{2N+1})$

$$\rightarrow (A_1, A_{k-1})$$

 \rightarrow (A_N, A_L)

[Agarwal-Sciarappa-Song, Benvenuti-Giacomelli]

T = SU(2) w/4 flavors

In this case, F = SO(8)

We consider the principal embedding of SO(8), the vev which breaks SO(8) completely.

The adjoint rep decomposes as

28 → **3**, **7**, **7**, **1**

 $M_{1,-1}, M_{3,-3}, M'_{3,-3}, M_{5,-5}$

→ after integrating out the massive fields, we get SU(2) w/ I flavor and adjoint and the superpotential

$$W = \mathrm{tr}\phi q^2 + M_5 \mathrm{tr}\phi q^2$$

Central charges

The central charges of the SCFT are determined from the anomaly coefficients of the IR R-symmetry: [Anselmi-Freedman-Grisaru-Johansen]

$$a = \frac{3}{32} (3 \text{Tr} R_{\text{IR}}^3 - \text{Tr} R_{\text{IR}}), \quad c = \frac{1}{32} (9 \text{Tr} R_{\text{IR}}^3 - 5 \text{Tr} R_{\text{IR}})$$

In our case, the IR R-symmetry is a combination of two U(1)'s. Thus consider the following (

 $R_{\rm IR}(\epsilon) = R_0 + \epsilon \mathcal{F}$

The true R symmetry is determined by maximizing trial central charge [Intriligator-Wecht]

$$a(\epsilon) = \frac{3}{32} (3 \operatorname{Tr} R_{\mathrm{IR}}(\epsilon)^3 - \operatorname{Tr} R_{\mathrm{IR}}(\epsilon))$$

Decoupling issue

The tr ϕ^2 operator hits the unitarity bound (Δ <1). We interpret this as being decoupled. Thus we subtract its

contribution from central charge, and re-a-maximize

Tro², M, ... $\epsilon = \frac{13}{15}$, $a = \frac{43}{120}$, $c = \frac{11}{30}$

A way to pick up the interacting part is by introducing a chiral multiplet X to set tr $\phi^2=0$: $\delta W = X \text{tr} \phi^2$ $a_{\text{chiral}}(r) = -a_{\text{chiral}}(2-r)$

In the end, the Lagrangian which flows to the Argyres-Douglas theory (H_0 theory) is

$$W = \mathrm{tr}\phi q^2 + M\mathrm{tr}\phi q'^2 + X\mathrm{tr}\phi^2$$

Chiral ring of H₀

We had the following chiral operators

$$\mathrm{tr}\phi q^2$$
, $\mathrm{tr}\phi q q'$, $\mathrm{tr}q q'$, $\mathrm{tr}\phi q'^2$, X , M

The F-term conditions are

$$0 = qq + Mq'^2 + 2X\phi$$
, $0 = tr\phi q'^2$, $0 = \phi q$, $0 = M\phi q'$, $0 = tr\phi^2$.

Thus, **the generators in the chiral ring** are only

$$trqq', M$$

dim =11/5, 6/5

(moduli space of X is uplifted quantum mechanically)

form N=2 Coulomb branch operator multiplet

T = SU(2) w/4 flavors

Other choices of embeddings:

• [5,1³], [4,4] (with SU(2)) \rightarrow H₁ theory (SU(2) flavor symmetry)

$$a = \frac{11}{24}, \ c = \frac{1}{2}$$

• $[3^2, 1^2]$ (with U(1)×U(1)) \rightarrow H₂ theory (SU(3) flavor symmetry)

$$a = \frac{7}{12}, \ c = \frac{2}{3}$$

• other embeddings \rightarrow N=1 SCFTs

H_I theory

By the deformation procedure one can obtain **SU(2)** gauge theory with the following chiral multiplets:

	(q, q')	ϕ	M	Х
SU(2)	2	adj		
$U(I)_{R0}$	-		4	0
$\cup ()_{\mathcal{F}}$	2	-	-4	2
$SU(2)_{f}$	2			

with the superpotential

$$W = X \mathrm{tr} \phi^2 + M q q'$$

This theory flows to the $H_{\rm I}$ theory with central charges

$$a = \frac{11}{24}, \ c = \frac{1}{2}$$

N=2? on Coulomb branch

From the Argyres-Douglas theory viewpoint, one can go to the Coulomb branch by turning on

- vev of Coulomb branch operator $\langle \mathcal{O} \rangle = u$
- relevant coupling: $\delta \mathscr{L} = c \int d^2 \theta_1 d^2 \theta_2 U$
- mass deformation: $\delta \mathscr{L} = m \int d^2 \theta_1 \mu_0$, $(\mu_0 : \text{moment map operator})$

One can study the physics on the IR Coulomb branch from the Lagrangian viewpoint: for the H₁ theory, the above deformations correspond to adding

$$W = X \mathrm{tr} \phi^2 + uqq' + cX + m \mathrm{tr} \phi qq'$$

The theory with superpotential

$$W = uqq' + m\phi qq'$$

has been studied by [Intriligator-Seiberg]. They found the theory is in N=I Coulomb branch parametrized by $v = \langle tr \phi^2 \rangle$, whose curve is given by

$$y^{2} = x^{3} - vx^{2} + \frac{1}{4}u\Lambda^{3}x - \frac{1}{64}m^{2}\Lambda^{6}$$

Adding the terms $X\phi^2 + cX$ sets the vev $v = \langle tr\phi^2 \rangle$ to -c. Thus the N=1 curve is now

$$y^{2} = x^{3} + cx^{2} + \frac{1}{4}u\Lambda^{3}x - \frac{1}{64}m^{2}\Lambda^{6}$$

which is indeed the same as the Seiberg-Witten curve of the N=2 H_I theory after the redefinition of the parameters.

Superconformal index

Now we had Lagrangian theories which flow to SCFTs in the IR. **Thus the superconformal indices of the latter can be simply computed from the matter content.**

The index of our N=1 theory is defined by **[Kinney-Maldacena-Minwalla-Raju, Romelsberger]** $\mathcal{S} = \operatorname{Tr}_{\mathscr{H}_{S^3}}(-1)^F p^{j_1+j_2-R/2} q^{j_2-j_1-R/2} \prod_i a_i^{F_i} a_i^{F_i}$ $= \operatorname{Tr}_{\mathscr{H}_{S^3}}(-1)^F t^{3(R+2j_1)} y^{2j_2} \prod_i a_i^{F_i} a_i^{F_i}$ ($p = t^3y, q = t^3/y$)

where j_1 and j_2 are rotation generators of the maximal torus $U(1)_1$ and $U(1)_2$ of $SO(4)=SU(2)_1 \times SU(2)_2$ and R and *Fi* is the generators of the $U(1)_R$ and Cartans of flavor symmetry.

(If S³ is described by equation $|x_1|^2 + |x_2|^2 = 1$, $j_1 + j_2$ and $j_1 - j_2$ rotate x_1 and x_2 by phase.)

Index of H₀ theory

For instance one could calculate the index of the Argyres-Douglas (H_0) theory from the Lagrangian:

$$I = \kappa \frac{\Gamma((pq)^{3}\xi^{-6})}{\Gamma((pq)^{1}\xi^{-2})} \oint \frac{dz}{2\pi iz} \frac{\Gamma(z^{\pm}(pq)^{\frac{1}{4}}\xi^{\frac{1}{2}})\Gamma(z^{\pm}(pq)^{-\frac{5}{4}}\xi^{\frac{7}{2}})\Gamma(z^{\pm 2,0}(pq)^{\frac{1}{2}}\xi^{-1})}{\Gamma(z^{\pm 2})}$$

 ξ : fugacity for U(1)_F

(We subtract the contributions of the decoupled operators!)

We substitute $\xi \to t^{\frac{1}{5}}(pq)^{\frac{3}{10}}$ for the correct IR R symmetry. After that

- basically one can compute the integral
- Coulomb index limit (pq/t=u, p,q,t→0): $I_C = \frac{1}{1-u^{\frac{6}{5}}}$
- Macdonald limit ($p \rightarrow 0$) agrees with the index by [Cordova-Shao, Song]

Class S interpretation

All the theories T, which show the IR enhancement of supersymmetry by nilpotent principal deformation, are of class S [Gaiotto], in terms of a sphere with one irregular and one regular punctures:

 $j^{b}(k): \phi_{\text{Hitchin}}(z) \sim \frac{A}{(z-z_{0})^{2+k/b}} + \dots$

The nilpotent deformation above is done by changing the twisting (N=1)twist) [Bah-Beem-Bobev-Wecht] and by closing the regular puncture [Gadde-KM-Tachikawa-Yan]

General deformations of N=I SCFTs

Systematic deformation procedure

[Nardoni-KM-Song]

- I. Suppose we have an N=I SCFT, $T_{N=I}$
- 2. find all the relevant operators O(R < 2) and all the "super"-relevant operator $O_s(R < 4/3)$
- 3. deform SCFT by each relevant operator, or by each super-relevant operator by coupling with free chiral multiplet M: $d^{2}\theta OM$
- 4. at each fixed point, return to 2 and repeat the procedure, and stop if it terminates

- For step 2, it is enough to know the superconformal index for the purpose to find the relevant operators.
- Once we could get the index it is convenient to consider the "reduced" index and the expansion in the variable t.

$$\mathscr{I}_{\text{red}} = (1 - t^3 y)(1 - t^3 y^{-1})(\mathscr{I} - 1)$$

example H₀:

$$\mathscr{I}_{\rm red} = t^{\frac{12}{5}} v^{\frac{6}{5}} - t^{\frac{17}{5}} v^{\frac{1}{5}} \chi_2(y) + t^{\frac{22}{5}} v^{-\frac{4}{5}} + t^{\frac{24}{5}} v^{\frac{12}{5}} - t^{\frac{29}{5}} v^{\frac{7}{5}} \chi_2(y) - t^6 + \dots$$

• For Step 3, one can find the fixed point by a-maximization.

• The index of the fixed point can be obtained by setting the flavor fugacities according to the mixing, then we return to point 2

• The index cannot have the terms which indicating the unitarity-violation. If there is no such term, we call the fixed points as "good".

 Results for simple SCFTs: T_{N=1} = the fixed point of adjoint SU(2) w/ N_f=1 34 good fixed points; N=2 H₀ and H₁ adjoint SU(3) w/ N_f=1 41 good fixed points; N=2 (A₁, A₅) adjoint SU(2) w/ N_f=2 ??? fixed points; N=2 H₀, H₁ and H₂

• Duality of theories adjoint SU(2) w/ $N_f{=}1$ and $N_f{=}2$ (whose fixed point is H_1 theory).

For $T_{N=1} = (\text{the fixed point of adjoint SU(2) w/ N_f=I})$

	(a,c)	R(q)	$R(\widetilde{q})$	$R(\phi)$	$R(X_i)$	$R(M_i)$
1	$\left(\frac{263}{768}, \frac{271}{768}\right) \simeq (0.3424, 0.3529)$	$\frac{11}{12}$	$\frac{5}{12}$	$\frac{1}{6}$	$\frac{5}{3}$	1
2	$\left(\frac{1465\sqrt{1465}+81108}{397488}, \frac{1051\sqrt{1465}+29088}{198744}\right)$ $\simeq (0.3451, 0.3488)$	$\frac{543 - \sqrt{1465}}{546}$	$\frac{75 - \sqrt{1465}}{78}$	$\frac{\sqrt{1465}+3}{273}$	$\frac{2\left(270-\sqrt{1465}\right)}{273}$	
3	$\left(\frac{711}{2048}, \frac{807}{2048}\right) \simeq (0.3472, 0.3940)$	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{2}$	$rac{5}{4}, rac{3}{4}$
4	$\left(\frac{43}{120}, \frac{11}{30}\right) \simeq (0.3583, 0.3667)$	$\frac{8}{15}$	$\frac{14}{15}$	$\frac{2}{15}$	$\frac{26}{15}$	$\frac{4}{5}$
5	$\left(\frac{375}{1024}, \frac{439}{1024}\right) \simeq (0.3662, 0.4287)$	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{3}{2}$	$rac{5}{4},rac{3}{4},rac{3}{4}$
6	$\left(\frac{2211}{5488}, \frac{1277}{2744}\right) \simeq (0.4029, 0.4654)$	$\frac{4}{7}$	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{10}{7}$	$\frac{8}{7}, \frac{6}{7}$
7	$\left(\frac{14535}{35152}, \frac{8535}{17576}\right) \simeq (0.4135, 0.4856)$	$\frac{6}{13}$	$\frac{4}{13}$	$\frac{4}{13}$	$\frac{18}{13}$	$rac{14}{13},rac{12}{13},rac{14}{13},rac{12}{13}$
8	$\left(\frac{7441\sqrt{7441}+628560}{3072432}, \frac{4606\sqrt{7441}+348435}{1536216}\right)$ $\simeq (0.4135, 0.4854)$	$\frac{783-5\sqrt{7441}}{759}$	$\frac{147 + \sqrt{7441}}{759}$	$\frac{147 + \sqrt{7441}}{759}$	$\frac{2\left(612-\sqrt{7441}\right)}{759}$	$\frac{359 - \sqrt{7441}}{253}, \frac{147 + \sqrt{7441}}{253}$
9	$\left(\frac{285}{686}, \frac{167}{343}\right) \simeq (0.4155, 0.4869)$	$\frac{4}{7}$	$\frac{2}{7}$	$\frac{2}{7}$	$\frac{10}{7}$	$\frac{8}{7}, \frac{6}{7}, \frac{6}{7}$
10	$\left(\frac{924}{2197}, \frac{1093}{2197}\right) \simeq (0.4206, 0.4975)$	$\frac{4}{13}$	$\frac{6}{13}$	$\frac{4}{13}$	$\frac{18}{13}$	$\frac{10}{13}, \frac{12}{13}, \frac{14}{13}, \frac{16}{13}, \frac{12}{13}$
11	$\left(\frac{4\left(896\sqrt{7}+1665\right)}{38307}, \frac{4036\sqrt{7}+8355}{38307}\right) \simeq (0.4214, 0.4969)$	$\frac{378 - 80\sqrt{7}}{339}$	$\frac{4\left(4\sqrt{7}+15\right)}{339}$	$\frac{4\left(4\sqrt{7}+15\right)}{339}$	$\frac{-2\left(16\sqrt{7}-279\right)}{339}$	$\frac{\frac{-2(8\sqrt{7}-83)}{113},\frac{4(4\sqrt{7}+15)}{113}}{\frac{4(4\sqrt{7}+15)}{113}},\\\frac{\frac{4(4\sqrt{7}+15)}{113}}{113}$
12	$\left(\frac{7587}{17576}, \frac{2277}{4394}\right) \simeq (0.4317, 0.5182)$	$\frac{6}{13}$	$\frac{4}{13}$	$\frac{4}{13}$	$\frac{18}{13}$	$\frac{14}{13}, \frac{12}{13}, \frac{14}{13}, \frac{10}{13}, \frac{12}{13}$
13	$\left(\frac{339}{784}, \frac{97}{196}\right) \simeq (0.4324, 0.4949)$	$\frac{1}{2}$	$\frac{5}{14}$	$\frac{2}{7}$	$\frac{10}{7}$	$1, \frac{6}{7}, \frac{8}{7}$
14	$\left(\frac{\frac{5665\sqrt{5665}+162189}}{1359456}, \frac{5903\sqrt{5665}+262863}{1359456}\right)$ $\simeq (0.4329, 0.5202)$	$\frac{5\sqrt{5665}-27}{714}$	$\frac{291 - \sqrt{5665}}{714}$	$\frac{291 - \sqrt{5665}}{714}$	$\frac{\sqrt{5665}+423}{357}$	$\frac{\frac{\sqrt{5665}+185}{238},\frac{291-\sqrt{5665}}{238}}{\frac{397-3\sqrt{5665}}{238}},$
15	$\left(\frac{15423}{35152}, \frac{9317}{17576}\right) \simeq (0.4388, 0.5301)$	$\frac{4}{13}$	$\frac{6}{13}$	$\frac{4}{13}$	$\frac{18}{13}$	$\frac{10}{13}, \frac{12}{13}, \frac{14}{13}, \frac{16}{13}, \frac{12}{13}, \frac{10}{13}$

16	$\left(\frac{24817\sqrt{24817} + 1456776}{12144432}, \frac{13666\sqrt{24817} + 1101111}{6072216}\right)$	$5\sqrt{24817} - 27$	$\frac{609 - \sqrt{24817}}{1500}$	$\frac{609 - \sqrt{24817}}{1500}$	$2(\sqrt{24817}+900)$	$\frac{\sqrt{24817}+397}{503}, \frac{609-\sqrt{24817}}{503},$
	$\simeq (0.4419, 0.5359)$	1509	1509	1509	1509	$\frac{609 - \sqrt{24817}}{503}, \frac{821 - 3\sqrt{24817}}{503}$
17	$\left(\frac{1221}{2744}, \frac{1417}{2744}\right) \simeq (0.4450, 0.5164)$	$\frac{1}{2}$	$\frac{5}{14}$	$\frac{2}{7}$	$\frac{10}{7}$	$1, rac{6}{7}, rac{8}{7}, rac{6}{7}$
18	$\left(\frac{97\sqrt{97}+423}{3072},\frac{113\sqrt{97}+471}{3072}\right) \simeq (0.4487,0.5156)$	$\frac{123-7\sqrt{97}}{96}$	$\frac{45-\sqrt{97}}{96}$	$\frac{\sqrt{97}+3}{48}$	$\frac{45 - \sqrt{97}}{24}$	$1, \frac{\sqrt{97}+3}{16}$
19	$\left(\frac{19\sqrt{19}-72}{24}, \frac{5(4\sqrt{19}-15)}{24}\right) \simeq (0.4508, 0.5074)$	$\frac{7-\sqrt{19}}{4}$	$\frac{27-5\sqrt{19}}{12}$	$\frac{\sqrt{19}-3}{6}$	$\frac{9-\sqrt{19}}{3}$	$\frac{2(\sqrt{19}-3)}{3}, \frac{2(6-\sqrt{19})}{3}, \frac{\sqrt{19}-3}{2}$
20	$\left(\frac{621}{1372}, \frac{2925}{5488}\right) \simeq (0.4526, 0.5330)$	$\frac{1}{2}$	$\frac{5}{14}$	$\frac{2}{7}$	$\frac{10}{7}$	$1, rac{6}{7}, rac{8}{7}, rac{5}{7}$
21	$\left(\frac{927}{2048}, \frac{1023}{2048}\right) \simeq (0.4526, 0.4995)$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{3}{2}$	1
22	$\left(\frac{601\sqrt{601}+15012}{65712}, \frac{430\sqrt{601}+5841}{32856}\right) \simeq (0.4527, 0.4986)$	$\frac{105 - 2\sqrt{601}}{111}$	$\frac{105 - 2\sqrt{601}}{111}$	$\frac{\sqrt{601}+3}{111}$	$\frac{-2\left(\sqrt{601}-108\right)}{111}$	
23	$\left(\frac{11}{24}, \frac{1}{2}\right) \simeq (0.4583, 0.5000)$	$\frac{5}{9}$	$\frac{5}{9}$	$\frac{2}{9}$	$\frac{14}{9}$	$\frac{8}{9}$
24	$\left(\frac{2553}{5488}, \frac{3043}{5488}\right) \simeq (0.4652, 0.5545)$	$\frac{1}{2}$	$\frac{5}{14}$	$\frac{2}{7}$	$\frac{10}{7}$	$1, \frac{6}{7}, \frac{8}{7}, \frac{5}{7}, \frac{6}{7}$
25	$\left(\frac{483}{1024}, \frac{547}{1024}\right) \simeq (0.4717, 0.5342)$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{3}{2}$	$1, \frac{3}{4}$
26	$\left(\frac{352\sqrt{22}+1251}{6144}, \frac{416\sqrt{22}+1347}{6144}\right) \simeq (0.4723, 0.5368)$	$\frac{2\sqrt{22}+3}{24}$	$\frac{21\!-\!2\sqrt{22}}{24}$	$\frac{1}{4}$	$\frac{3}{2}$	$1, \frac{9-\sqrt{22}}{6}$
27	$\left(\frac{61\sqrt{61}-441}{75}, \frac{127\sqrt{61}-912}{150}\right) \simeq (0.4723, 0.5327)$	$\frac{39 - 4\sqrt{61}}{15}$	$\frac{39{-}4\sqrt{61}}{15}$	$\frac{2\left(\sqrt{61}-6\right)}{15}$	$\frac{2\left(27-2\sqrt{61}\right)}{15}$	$\frac{2\left(\sqrt{61}-6\right)}{5}$
28	(0.4727, 0.5351)	0.5258	0.5009	0.2433	1.513	0.7051
29	$\left(\frac{1005}{2048}, \frac{1165}{2048}\right) \simeq (0.4907, 0.5688)$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{3}{2}$	$1,rac{3}{4},rac{3}{4}$
30	$\left(\frac{44\sqrt{22}+171}{768}, \frac{13(4\sqrt{22}+15)}{768}\right) \simeq (0.4914, 0.5715)$	$\frac{2\sqrt{22}+3}{24}$	$\frac{21\!-\!2\sqrt{22}}{24}$	$\frac{1}{4}$	$\frac{3}{2}$	$1, \frac{3}{4}, \frac{9-\sqrt{22}}{6}$
31	$\left(\frac{89\sqrt{\frac{89}{17}}-180}{48},\frac{44\sqrt{\frac{89}{17}}-87}{24}\right) \simeq (0.4925,0.5698)$	$\frac{2\sqrt{\frac{89}{17}}-3}{3}$	$\frac{2\sqrt{\frac{89}{17}}-3}{3}$	$\frac{3-\sqrt{\frac{89}{17}}}{3}$	$\frac{2\sqrt{\frac{89}{17}}}{3}$	$3 - \sqrt{\frac{89}{17}}, 3 - \sqrt{\frac{89}{17}}$
32	(0.4927, 0.5714)	0.5129	0.5326	0.2386	1.523	0.7159, 0.6962
33	$\left(\frac{261}{512}, \frac{309}{512}\right) \simeq (0.5098, 0.6035)$	$\frac{1}{2}$	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{3}{2}$	$1, \frac{3}{4}, \frac{3}{4}, \frac{3}{4}$
34	$\left(\frac{553\sqrt{553}-7047}{11616}, \frac{575\sqrt{553}-6453}{11616}\right)$ $\simeq (0.5129, 0.6085)$	$\frac{\sqrt{553}-6}{33}$	$\frac{\sqrt{553}-6}{33}$	$\frac{39 - \sqrt{553}}{66}$	$\frac{\sqrt{553}+27}{33}$	$\left \frac{39-\sqrt{553}}{22},\frac{39-\sqrt{553}}{22},\frac{39-\sqrt{553}}{22}\right $

34 good fixed points (blue dots) + 36 "bad" fixed points (yellow dots)

• Ho*, minimal a: $W = X \operatorname{tr} \phi^2 + \operatorname{tr} \phi q^2 + M \operatorname{tr} \phi q'^2 + M^2$

There is no global U(1) symmetry other than U(1)_R, the central charges

$$a_{H_0^*} = \frac{263}{768} \simeq 0.3422, \quad c_{H_0^*} = \frac{261}{768} \simeq 0.3529.$$

which are the same as those studied by [Xie-Yonekura, Buican-Nishinaka]

• **T**₀, minimal **c**:
$$W = X tr \phi^2 + tr \phi q^2$$

There is a global U(1) symmetry and the central charges are $a_{T_0} = \frac{81108 + 1465\sqrt{1465}}{397488} \simeq 0.3451, \quad c_{T_0} = \frac{29088 + 1051\sqrt{1465}}{198744} \simeq 0.3488.$

Also, minimal a for SCFTs with global U(I). [Benvenuti]

Both theories have the scalar operator \mathcal{O} with the lowest dimension satisfying the relation $\mathcal{O}^2 \sim 0$. cf. [Poland-Stergiou]

Conclusions and discussions

- We considered two different deformation procedures which produce various fixed points including N=2 susy enhanced ones.
- What is the precise conditions for susy enhancement?
- Why susy enhancement??

- Localization computations [Fredrickson-Pei-Yan-Ye, Gukov, Fluder-Song]
- Toward minimal N=1 SCFT [Poland-Stergiou]
- Holographic dual of the RG flow with the enhanced susy.
- string/M-theory realization? [Giacomelli, Carta-Giacomelli-Savelli]